Defining the Stoicheiometry of a Subcarbonylmetal Guest using Mixed Vibrational Isotope Labelling Techniques

Geoffrey A. Ozin, Saim Özkar, and Douglas F. McIntosh

Lash Miller Chemical Laboratory, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S IAl

The tricarbonyl stoicheiometry, structure, and anchoring site geometry of $M(CO)_{3}-M*_{56}Y$ which are cleanly generated via the mild vacuum thermal decarbonylation of $\overline{M(CO)}_6 - M^*_{56}$ Y (where M = Cr, Mo, or W; M* = Li, Na, \tilde{k} , Rb, or Cs; Y = dehydrated zeolite Y), have been unequivocally established for the first time from analysis of their $M(^{12}CO)_{n}(^{13}CO)_{3-n}$ -M*₅₆Y vibrational isotope patterns.

Intrazeolite metal carbonyls (IMCs) have been traditionally utilized as precursors to encapsulated subcarbonylmetal and metal cluster guests of interest in size/shape selective catalysis.' Recently we have instead exploited **IMCs** for the phototopotactic growth and stabilization of intrazeolite semiconductor quantum dots **(QDs)** and quantum supralattices **(QSs)** exemplified by tungsten(w) oxide *via* reactions of the type in equation (1), where $M^* = Li$, Na, K, Rb, or Cs and $0 < n \leq 32.2$ The successful fabrication of organized assemblies of semiconductor **QDs** and **QSs** of this kind necessitates precise knowledge of the location, distribution, stoicheiometry, structure, and support-interactions of the guest precursor and

Table 1. Observed and calculated v(CO) frequencies (cm⁻¹) of regular trigonal pyramidal $W(^{12}CO)_{n}(^{13}CO)_{3-n}$ -Cs₅₆Y.

^aBest-fit Cotton-Kraihanzel force constants are: $f_r = 12.95$; $f_{rr} = 0.75$ mdyn/A. **RMS** error in the eigenvalues **is** 1.744 cm-l

reactive intermediates in the zeolite host lattice which are involved in the pathway to the immobilized **QDs** and **QSs.**

 $n\{\text{W(CO)}_6\} - \text{M*}_{56}\text{Y} + 9/2n\text{O}_2 \xrightarrow{hv}$ $n(WO_3) - M *_{56}Y + 6nCO_2$ (1)

Table 2. Observed and calculated $v(CO)$ frequencies $(cm⁻¹)$ of distorted trigonal pyramidal $Mo({}^{12}CO)_n ({}^{13}CO)_{3-n}$ -Li₅₆Y.

~ ~ ~

^aBest fit Cotton-Kraihanzel force constants are: $f_r = 12.48$; $f'_r =$ 13.99; $f_{rr} = 1.11$; $f_{rr'} = 0.98$ mdyn/Å. RMS error in the eigenvalues is 2.055 cm-1.

In the course of an extensive study2 of thermal decarbonylation, ligand-exchange, and photo-oxidation chemistry of $M(CO)₆-M*₅₆Y$, where $M = Cr$, Mo, or W; $M^* = Li$, Na, K, Rb, or Cs, it proved possible for the first time to define unequivocally the stoicheiometry and structure of an IMC reactive intermediate, $M(CO)₃-M*₅₆Y$ using mixed 12CO/13CO vibrational isotope labelling techniques. The following is a summary of this work.

Briefly, the *in situ* thermal vacuum decarbonylation of $M(CO)_{6}$ - $M*_{56}Y$ at 100-150 °C can be organized to proceed through two intermediate stages to produce cleanly a single, well defined subcarbonylmetal species denoted $M(CO)_{3}$ - $M*_{56}Y$ [reaction (2)].†

$$
M(CO)_{6} - M*_{56}Y \frac{100 - 150 \text{ °C}}{in \text{ vacuo}} M(CO)_{3} - M*_{56}Y + 3CO \quad (2)
$$

Of the fifteen $M(CO)₃-M*₅₆Y$ species possible with $M =$ Cr, Mo, or W, and $M^* = Li$, Na, \bar{K} , Rb, or Cs only the two high atomic number combinations $Mo(CO)₃-Cs₅₆Y$ and $W(CO)_{3}-Cs_{56}Y$ display the diagnostic $A_1 + E_1V(CO)$ vibrational patterns of an anchored C_{3v} trigonal pyramidal tricarbony1 moiety, while the remaining thirteen samples show 2A' $+ A''$ v(CO) patterns signalling a C_s distorted version of the above C_{3v} species. Although trapping experiments² using tridentate ligands like benzene and cyclohepta-1,3,5-triene provide indirect but compelling proof of the proposed intrazeolite tricarbonylmetal(0) stoicheiometry [reaction (3)], direct proof derives from mixed $^{12}CO/^{13}CO$ isotope labelling experiments of the kind in reaction (4), where $m = 0$ —6; $n = 0$ 0-3. The $W(^{12}CO)_{m}(^{13}CO)_{6-m}$ -Cs₅₆Y and Mo(¹²CO)_m. $(13CO)_{6-m}$ -Li₅₆Y precursors‡ will be used to exemplify the method for elucidation of stoicheiometry and structure of the respective regular trigonal pyramidal $W(^{12}CO)_{n}(^{13}CO)_{3-n}$ Cs_{56} Y and distorted trigonal pyramidal Mo(^{12}CO)_n(^{13}CO)_{3-n}- $Li_{56}Y$ tricarbonyl moieties.

$$
M(CO)3-M*56Y + C6H6 \longrightarrow (\eta6-C6H6)M(CO)3-M*56Y
$$
 (3)

$$
M(^{12}CO)_{m}(^{13}CO)_{6-m}-M^{*}{}_{56}Y \longrightarrow M(^{12}CO)_{3-n}-M^{*}{}_{56}Y
$$

\n
$$
M(^{12}CO)_{n}(^{13}CO)_{3-n}-M^{*}{}_{56}Y
$$

\n
$$
+ (3-m+n)^{13}CO + (m-n)^{12}CO \quad (4)
$$

Figure 1. Mid-IR 12CO/13C0 vibrational isotope spectral patterns of the A₁ + E v(CO) modes of $W(^{12}CO)_{n}(^{13}CO)_{3-n}$ -Cs₅₆Y, (where *n* = 0-3) with various levels of ¹³CO enrichment. A low concentration of a second trapping site of $W({}^{12}CO)_n({}^{13}CO)_{3-n}$ -Cs₅₆Y is indicated by an asterisk.

Thus, the A₁ + E v(CO) modes of the postulated C_{3v} $W(^{12}CO)_{3}-Cs_{56}Y$ occur at 1895 and 1741 cm⁻¹ respectively. The $12CO/13CO$ mixed isotope vibrational patterns for the parent A₁ and E v(CO) modes of W(¹²CO)_n(¹³CO)_{3-n}-Cs₅₆Y utilizing 1, 30, 40, 50, 60, 80, 96, and 100% ¹³CO enrichment are depicted in Figure 1. The isotopic quartet structure on both the parent A₁ and E $v(CO)$ fundamentals $(n = 0-3)$ unequivocally establishes the $W(CO)$ ₃ subcarbonyl stoicheiometry with perfect C_{3v} trigonal pyramidal symmetry. The acceptable fit (RMS error, 1.7 cm^{-1}) between the calculated (Cotton-Kraihanzel force field)3 and observed $v(CO)$ frequencies for the four expected mixed isotopic molecules $(n = 0-3)$ listed in Table 1 provides additional support for the vibrational assignments, stoicheiometry, and C_{3v} structure of W(CO)₃-Cs₅₆Y.

By contrast, the $Mo(^{12}CO)_{3}$ -Li₅₆Y moiety displays $A' + A''$ $+ A'$ v(CO) modes at 1925, 1798, and 1760 cm⁻¹ respectively. The $^{12}CO/^{13}CO$ isotope patterns for various ^{13}CO enrichments consist of a triplet, triplet, and doublet structure running from the parent high frequency A', through the middle A'' to the low frequency A' $v(CO)$ mode respectively. This observation together with the calculated frequencies (RMS error, 2.0 cm-1) (Table 2) establishes the tricarbonyl stoicheiometry and distorted *C,* pyramidal geometry for $Mo(^{12}CO)_{3-n}$ $($ ¹³CO)_n-Li₅₆Y, where $n = 0$ -3.

The question of whether the tricarbonylmetal(0) fragment is anchored in the a-cage of zeolite **Y** *via* extraframework

f After vacuum thermal dehydration and calcining at 450 "C the zeolite wafers were exposed to the hexacarbonylmetal(0) vapour at room temperature in a mid-IR transmission UV-VIS reflectance cell specially designed for *in situ* treatments (G. A. Ozin and J. **P.** Godber, *J. Phys. Chem.*, 1988, 92, 4980). Partial decarbonylation of $M(CO)_{6-}$ $\mathbf{M}^*{}_{56}\mathbf{Y}$ was achieved by heating the impregnated wafer at 100—150 °C for 30 min in dynamic vacuum. Various alkali-metal zeolites were prepared from the sodium zeolite Y (UOP, Union Carbide, Tarrytown, NY) by use of standard ion-exchange techniques (J. Dwyer and A. Dyer, *Chem. Ind.*. 1984, 237).

^{\$} The selective 12CO/13C0 labelling of the intrazeolite precursor hexacarbonylmetal(0) moiety is most easily accomplished by conducting a thermal (90 °C) or photochemical (room temp.; $\lambda > 240$ nm broadband) reaction of intrazeolite $M(^{12}CO)_6-M*_{56}Y$ with ¹³CO using a pressure of 50 Torr.

carions through the metal centre or oxygen-end of the carbonyl, or to a framework oxygen site through the metal centre has been answered by an EXAFS structure determination of a representative sample, namely $Mo(CO)₃-Rb₅₆Y₂$. The absence of a direct $Mo \cdots Rb$ bonding interaction, together with carbonyl and oxygen co-ordination numbers close to three favours the oxygen framework anchoring site model **(I).**

Finally, the occurrence and origin of the observed C_{3v} to C_s structural distortion amongst the fifteen $M(CO)_{3}-M*_{56}Y$ samples is traced *via* optical reflectance spectroscopy and molecular orbital analysis2 to the operation of a second order Jahn-Teller effect. In essence, it is the coupling between the closely spaced HOMO 1e and LUMO 2e states of C_{3v} $M(CO)₃$ - $M*_{56}Y$ through a degenerate e-type vibrational motion (e \times e = a₁ + a₂ + e) that leads to the observed distortion to the lower symmetry C_s species.⁴ This will be favoured for those circumstances that boast a small HOMO-LUMO energy gap, namely low atomic number elements for both M and \tilde{M}^* . On this basis it is easy to appreciate why it is that in the fifteen $M(CO)_{3}$ - $M*_{56}Y$ samples, it is *only* the M = Mo, W and $M^* = Cs$ systems that exist with the regular C_{3v} trigonal pyramidal geometry; the rest undergo a static: second-order Jahn-Teller distortion and settle down in the *C,* distorted trigonal pyramidal form.

We acknowledge the Natural Sciences and Engineering Research Council of Canada's Operating and Strategic Grants Programmes for generous financial support of this work. **S.** 0. thanks the Middle East Technical University for extended leave of absence. Supplies of high quality zeolites from Dr. Edith Flanigen of UOP Union Carbide, Tarrytown, NY, are gratefully appreciated.

Received, 28th December 1989; Com. 910.54958

References

- 1 S. L. Anderson and R. F. Howe, J. *Phys. Chem.,* 1989, 4913; Y. Okamoto, **A.** Maezawa, H. Kane, I. Mitsushima, and T. Imanaka, J. *Chem. Soc., Furuduy Trans. 1,* 1988,84,851; G. **A.** Ozin and C. Gil, *Chem. Rev.,* 1989, *89,* 1749, and references cited therein.
- 2 G. **A.** Ozin and *S.* Ozkar, J. *Phys. Chem.,* 1990, in the press; **S.** Ozkar, G. **A.** Ozin, T. Bein, and K. Moller, *J. Am. Chem. Soc.,* submitted for publication.
- 3 D. F. McIntosh and M. R. Peterson, Programs No. 432, BMAT, FTRY/ATOM, FFIT; Quantum Chemistry Program Exchange, Room 204, Indiana University, Bloomington, IN, 47401; F. A. Cotton and C. S. Kraihanzel, J. *Am. Chem. Soc.,* 1962, **84,** 4432.
- 4 T. A. Albright, **J.** K. Burdett, and **M.** H. Whangbo, 'Orbital Interactions in Chemistry,' Wiley, New York, 1985.